Universal homomorphisms

Wiesław Kubiś

Academy of Sciences of the Czech Republic and Jan Kochanowski University in Kielce, Poland http://www.ujk.edu.pl/~wkubis/

Winter School in Abstract Analysis, Hejnice 2013

< 6 b

The Urysohn space is the unique Polish metric space \mathbb{U} satisfying the following condition:

(U) Given finite metric spaces $S \subseteq T$, given an isometric embedding $f: S \to \mathbb{U}$, given $\varepsilon > 0$, there exists an ε -isometric embedding

 $g \colon T \to \mathbb{U}$ such that $g \upharpoonright S = f$.

Definition

The Gurarii space is the unique separable Banach space \mathbb{G} satisfying the following condition:

(G) Given finite-dimensional spaces $S \subseteq T$, given a linear isometric embedding $f: S \to \mathbb{U}$, given $\varepsilon > 0$, there exists a linear ε -isometric embedding $g: T \to \mathbb{U}$ such that $g \upharpoonright S = f$.

The Urysohn space is the unique Polish metric space $\mathbb U$ satisfying the following condition:

(U) Given finite metric spaces $S \subseteq T$, given an isometric embedding $f: S \to \mathbb{U}$, given $\varepsilon > 0$, there exists an ε -isometric embedding

 $g \colon T \to \mathbb{U}$ such that $g \upharpoonright S = f$.

Definition

The Gurarii space is the unique separable Banach space \mathbb{G} satisfying the following condition:

(G) Given finite-dimensional spaces $S \subseteq T$, given a linear isometric embedding $f: S \to \mathbb{U}$, given $\varepsilon > 0$, there exists a linear ε -isometric embedding $g: T \to \mathbb{U}$ such that $g \upharpoonright S = f$.

Let \mathbb{U} denote the Urysohn space. There exists a non-expansive map $v \colon \mathbb{U} \to \mathbb{U}$ satisfying the following conditions:

- For every non-expansive map f: X → Y between separable metric spaces, there exist isometric embeddings i: X → U, j: Y → U such that v ∘ i = j ∘ f.
- ② Given isometries g: A₀ → A₁, h: B₀ → B₁ such that A₀, A₁, B₀, B₁ ⊆ U are finite and h ∘ v = v ∘ g, there exist bijective isometries G: U → U and H: U → U extending g and h, respectively, and such that H ∘ v = v ∘ G.

Furthermore, the conditions above determine v up to an isometry.

Let \mathbb{U} denote the Urysohn space. There exists a non-expansive map $v \colon \mathbb{U} \to \mathbb{U}$ satisfying the following conditions:

- For every non-expansive map f: X → Y between separable metric spaces, there exist isometric embeddings i: X → U, j: Y → U such that v ∘ i = j ∘ f.
- ② Given isometries g: A₀ → A₁, h: B₀ → B₁ such that A₀, A₁, B₀, B₁ ⊆ U are finite and h ∘ v = v ∘ g, there exist bijective isometries G: U → U and H: U → U extending g and h, respectively, and such that H ∘ v = v ∘ G.

Furthermore, the conditions above determine v up to an isometry.

< 日 > < 同 > < 回 > < 回 > < 回 > <

Let \mathbb{U} denote the Urysohn space. There exists a non-expansive map $v \colon \mathbb{U} \to \mathbb{U}$ satisfying the following conditions:

- For every non-expansive map f: X → Y between separable metric spaces, there exist isometric embeddings i: X → U, j: Y → U such that v ∘ i = j ∘ f.
- ② Given isometries g: A₀ → A₁, h: B₀ → B₁ such that A₀, A₁, B₀, B₁ ⊆ U are finite and h ∘ v = v ∘ g, there exist bijective isometries G: U → U and H: U → U extending g and h, respectively, and such that H ∘ v = v ∘ G.

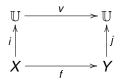
Furthermore, the conditions above determine v up to an isometry.

Let \mathbb{U} denote the Urysohn space. There exists a non-expansive map $v \colon \mathbb{U} \to \mathbb{U}$ satisfying the following conditions:

- For every non-expansive map f: X → Y between separable metric spaces, there exist isometric embeddings i: X → U, j: Y → U such that v ∘ i = j ∘ f.
- ② Given isometries g: A₀ → A₁, h: B₀ → B₁ such that A₀, A₁, B₀, B₁ ⊆ U are finite and h ∘ v = v ∘ g, there exist bijective isometries G: U → U and H: U → U extending g and h, respectively, and such that H ∘ v = v ∘ G.

Furthermore, the conditions above determine v up to an isometry.

The diagram



2

ヘロト 人間 とくほとくほど

Let X be a Polish metric space. Then there exist a Polish space $U(X) \supseteq X$ and a non-expansive map $u: U(X) \rightarrow X$ such that $u \upharpoonright X = id_X$ and the following conditions are satisfied:

- For every Polish metric space Y, for every non-expansive map f: Y → X there exists an isometric embedding i: Y → U(X) such that f = u ∘ i.
- Por every finite sets S, T ⊆ U(X), for every isometry h: S → T such that u ∘ h = u, there exists an isometry H: U(X) → U(X) satisfying H ↾ S = h and u ∘ H = u.

Furthermore, the conditions above determine u up to an isometry.

Let X be a Polish metric space. Then there exist a Polish space $U(X) \supseteq X$ and a non-expansive map $u: U(X) \rightarrow X$ such that $u \upharpoonright X = id_X$ and the following conditions are satisfied:

 For every Polish metric space Y, for every non-expansive map f: Y → X there exists an isometric embedding i: Y → U(X) such that f = u ∘ i.

So revery finite sets S, T ⊆ U(X), for every isometry h: S → T such that u ∘ h = u, there exists an isometry H: U(X) → U(X) satisfying H ↾ S = h and u ∘ H = u.

Furthermore, the conditions above determine u up to an isometry.

Let X be a Polish metric space. Then there exist a Polish space $U(X) \supseteq X$ and a non-expansive map $u: U(X) \rightarrow X$ such that $u \upharpoonright X = id_X$ and the following conditions are satisfied:

- For every Polish metric space Y, for every non-expansive map f: Y → X there exists an isometric embedding i: Y → U(X) such that f = u ∘ i.
- Por every finite sets S, T ⊆ U(X), for every isometry h: S → T such that u ∘ h = u, there exists an isometry H: U(X) → U(X) satisfying H ↾ S = h and u ∘ H = u.

Furthermore, the conditions above determine u up to an isometry.

< 日 > < 同 > < 回 > < 回 > < 回 > <

Let X be a Polish metric space. Then there exist a Polish space $U(X) \supseteq X$ and a non-expansive map $u: U(X) \rightarrow X$ such that $u \upharpoonright X = id_X$ and the following conditions are satisfied:

- For every Polish metric space Y, for every non-expansive map f: Y → X there exists an isometric embedding i: Y → U(X) such that f = u ∘ i.
- Por every finite sets S, T ⊆ U(X), for every isometry h: S → T such that u ∘ h = u, there exists an isometry H: U(X) → U(X) satisfying H ↾ S = h and u ∘ H = u.

Furthermore, the conditions above determine u up to an isometry.

A metric space $\langle X, d \rangle$ is finitely hyperconvex if for every family B_0, \ldots, B_{n-1} consisting of closed balls such that

$$\bigcap_{i < n} B_i = \emptyset$$

there exist i < j < n such that $d(x_i, x_j) > r_i + r_j$, where $B_i = B(x_i, r_i)$ and $B_j = \overline{B}(x_j, r_j)$.

Theorem

Given a Polish metric space X the following conditions are equivalent:

- (a) X is finitely hyperconvex.
- (b) U(X) is isometric to the Urysohn space \mathbb{U} .

A metric space $\langle X, d \rangle$ is finitely hyperconvex if for every family B_0, \ldots, B_{n-1} consisting of closed balls such that

$$\bigcap_{i < n} B_i = \emptyset$$

there exist i < j < n such that $d(x_i, x_j) > r_i + r_j$, where $B_i = \overline{B}(x_i, r_i)$ and $B_j = \overline{B}(x_j, r_j)$.

Theorem

Given a Polish metric space X the following conditions are equivalent:

(a) X is finitely hyperconvex.

(b) U(X) is isometric to the Urysohn space \mathbb{U} .

A metric space $\langle X, d \rangle$ is finitely hyperconvex if for every family B_0, \ldots, B_{n-1} consisting of closed balls such that

$$\bigcap_{i < n} B_i = \emptyset$$

there exist i < j < n such that $d(x_i, x_j) > r_i + r_j$, where $B_i = \overline{B}(x_i, r_i)$ and $B_j = \overline{B}(x_j, r_j)$.

Theorem

Given a Polish metric space X the following conditions are equivalent:

- (a) X is finitely hyperconvex.
- (b) U(X) is isometric to the Urysohn space \mathbb{U} .

Corollary (K. 2011)

Given a Polish metric space X, the following properties are equivalent:

- (a) X is a non-expansive retract of the Urysohn space \mathbb{U} .
- (b) X is finitely hyperconvex.

Theorem

Let $u: U(X) \to X$ be as before. Then for every $p \in X$ the subspace $u^{-1}(p)$ is isometric to \mathbb{U} .

< ロ > < 同 > < 回 > < 回 >

Corollary (K. 2011)

Given a Polish metric space X, the following properties are equivalent:

- (a) X is a non-expansive retract of the Urysohn space \mathbb{U} .
- (b) X is finitely hyperconvex.

Theorem

Let $u: U(X) \to X$ be as before. Then for every $p \in X$ the subspace $u^{-1}(p)$ is isometric to \mathbb{U} .

Let \mathbb{G} denote the Gurarii space. There exists a norm 1 linear operator $v : \mathbb{G} \to \mathbb{G}$ satisfying the following conditions:

- For every norm 1 linear operator f: X → Y between separable Banach spaces, there exist isometric embeddings i: X → G, j: Y → G such that v ∘ i = j ∘ f.
- Given linear isometries g: A₀ → A₁, h: B₀ → B₁ such that A₀, A₁, B₀, B₁ ⊆ G are finite-dimensional spaces and h ∘ v = v ∘ g, given ε > 0, there exist bijective isometries G: G → G and H: G → G extending g and h, respectively, and such that ||H ∘ v − v ∘ G|| < ε.

Furthermore, the conditions above determine v up to an isometry.

Let \mathbb{G} denote the Gurarii space. There exists a norm 1 linear operator $v : \mathbb{G} \to \mathbb{G}$ satisfying the following conditions:

- For every norm 1 linear operator f: X → Y between separable Banach spaces, there exist isometric embeddings i: X → G, j: Y → G such that v ∘ i = j ∘ f.
- Given linear isometries g: A₀ → A₁, h: B₀ → B₁ such that A₀, A₁, B₀, B₁ ⊆ G are finite-dimensional spaces and h ∘ v = v ∘ g, given ε > 0, there exist bijective isometries G: G → G and H: G → G extending g and h, respectively, and such that ||H ∘ v − v ∘ G|| < ε.

Furthermore, the conditions above determine v up to an isometry.

Let \mathbb{G} denote the Gurarii space. There exists a norm 1 linear operator $v : \mathbb{G} \to \mathbb{G}$ satisfying the following conditions:

- For every norm 1 linear operator f: X → Y between separable Banach spaces, there exist isometric embeddings i: X → G, j: Y → G such that v ∘ i = j ∘ f.
- Given linear isometries g: A₀ → A₁, h: B₀ → B₁ such that A₀, A₁, B₀, B₁ ⊆ G are finite-dimensional spaces and h ∘ v = v ∘ g, given ε > 0, there exist bijective isometries G: G → G and H: G → G extending g and h, respectively, and such that ||H ∘ v − v ∘ G|| < ε.

Furthermore, the conditions above determine v up to an isometry.

< 日 > < 同 > < 回 > < 回 > < 回 > <

Let \mathbb{G} denote the Gurarii space. There exists a norm 1 linear operator $v : \mathbb{G} \to \mathbb{G}$ satisfying the following conditions:

- For every norm 1 linear operator f: X → Y between separable Banach spaces, there exist isometric embeddings i: X → G, j: Y → G such that v ∘ i = j ∘ f.
- Given linear isometries g: A₀ → A₁, h: B₀ → B₁ such that A₀, A₁, B₀, B₁ ⊆ G are finite-dimensional spaces and h ∘ v = v ∘ g, given ε > 0, there exist bijective isometries G: G → G and H: G → G extending g and h, respectively, and such that ||H ∘ v − v ∘ G|| < ε.

Furthermore, the conditions above determine v up to an isometry.

Let X be a separable Banach space. Then there exist a separable Banach space $G(X) \supseteq X$ and a norm one linear operator $u : G(X) \to X$ such that $u \upharpoonright X = id_X$ and the following conditions are satisfied:

For every separable Banach space Y, for every norm one linear operator f: Y → X there exists a linear isometric embedding
 i: Y → G(X) such that f = u ∘ i.

Por every finite sets S, T ⊆ G(X), for every ε > 0, for every isometry h: S → T such that u ∘ h = u, there exists an isometry H: G(X) → G(X) satisfying H ↾ S = h and ||u ∘ H − u|| < ε.</p>

Furthermore, the conditions above determine u up to an isometry.

Let X be a separable Banach space. Then there exist a separable Banach space $G(X) \supseteq X$ and a norm one linear operator $u : G(X) \to X$ such that $u \upharpoonright X = id_X$ and the following conditions are satisfied:

For every separable Banach space Y, for every norm one linear operator f: Y → X there exists a linear isometric embedding i: Y → G(X) such that f = u ∘ i.

Sometry finite sets S, T ⊆ G(X), for every ε > 0, for every isometry h: S → T such that u ∘ h = u, there exists an isometry H: G(X) → G(X) satisfying H ↾ S = h and ||u ∘ H − u|| < ε.</p>

Furthermore, the conditions above determine u up to an isometry.

Let X be a separable Banach space. Then there exist a separable Banach space $G(X) \supseteq X$ and a norm one linear operator $u : G(X) \to X$ such that $u \upharpoonright X = id_X$ and the following conditions are satisfied:

- For every separable Banach space Y, for every norm one linear operator f: Y → X there exists a linear isometric embedding i: Y → G(X) such that f = u ∘ i.
- **2** For every finite sets S, T ⊆ G(X), for every ε > 0, for every isometry h: S → T such that u ∘ h = u, there exists an isometry H: G(X) → G(X) satisfying H ↾ S = h and ||u ∘ H − u|| < ε.</p>

Furthermore, the conditions above determine u up to an isometry.

< 日 > < 同 > < 回 > < 回 > < 回 > <

Let X be a separable Banach space. Then there exist a separable Banach space $G(X) \supseteq X$ and a norm one linear operator $u: G(X) \to X$ such that $u \upharpoonright X = id_X$ and the following conditions are satisfied:

- For every separable Banach space Y, for every norm one linear operator f: Y → X there exists a linear isometric embedding i: Y → G(X) such that f = u ∘ i.
- Por every finite sets S, T ⊆ G(X), for every ε > 0, for every isometry h: S → T such that u ∘ h = u, there exists an isometry H: G(X) → G(X) satisfying H ↾ S = h and ||u ∘ H − u|| < ε.
 </p>

Furthermore, the conditions above determine u up to an isometry.

< 日 > < 同 > < 回 > < 回 > < 回 > <

Theorem (Wojtaszczyk 1972, Lusky 1977)

Given a separable Banach space *X*, the following conditions are equivalent:

- (a) X is an isometric L^1 predual.
- (b) X is linearly isometric to a 1-complemented subspace of \mathbb{G} .
- (c) There exists a norm 1 projection $P : \mathbb{G} \to \mathbb{G}$ such that im P is linearly isometric to X and ker P is linearly isometric to \mathbb{G} .

Classical Fraïssé theory

The setup: Fraïssé class

- \mathscr{F} is a class of finitely generated structures.
- Joint Embedding Property: Given X, Y ∈ 𝔅, there is Z ∈ 𝔅 such that both X → Z and Y → Z.
- Amalgamation Property: Given embeddings *i*: Z → X, *j*: Z → Y with Z, X, Y ∈ 𝔅, there exists W ∈ 𝔅 such that for some embeddings the diagram

commutes.

Classical Fraïssé theory

The setup: Fraïssé class

- \mathscr{F} is a class of finitely generated structures.
- Joint Embedding Property: Given X, Y ∈ ℱ, there is Z ∈ ℱ such that both X → Z and Y → Z.
- Amalgamation Property: Given embeddings *i*: Z → X, *j*: Z → Y with Z, X, Y ∈ 𝔅, there exists W ∈ 𝔅 such that for some embeddings the diagram

commutes.

Classical Fraïssé theory

The setup: Fraïssé class

- \mathscr{F} is a class of finitely generated structures.
- Joint Embedding Property: Given X, Y ∈ 𝒴, there is Z ∈ 𝒴 such that both X → Z and Y → Z.
- Amalgamation Property: Given embeddings *i*: Z → X, *j*: Z → Y with Z, X, Y ∈ 𝔅, there exists W ∈ 𝔅 such that for some embeddings the diagram

commutes.

$$\sigma\mathscr{F} := \left\{ \bigcup_{n \in \omega} X_n \colon \{X_n\}_{n \in \omega} \subseteq \mathscr{F} \text{ is a chain} \right\}$$

Theorem

Let \mathscr{F} be a countable Fraïssé class. Then there exists a unique, up to isomorphism, countable structure $U = \text{Flim } \mathscr{F}$, satisfying the following conditions.

- $U \in \sigma \mathscr{F}.$
- ② Given \mathscr{F} -structures $X \subseteq Y$, given an embedding e: X → U, there exists an embedding f: Y → U such that f $\upharpoonright X = e$.
- Every *F*-structure embeds into U.

< 🗇 🕨

$$\sigma\mathscr{F} := \left\{ \bigcup_{n \in \omega} X_n \colon \{X_n\}_{n \in \omega} \subseteq \mathscr{F} \text{ is a chain} \right\}$$

Theorem

Let \mathscr{F} be a countable Fraïssé class. Then there exists a unique, up to isomorphism, countable structure $U = \text{Flim } \mathscr{F}$, satisfying the following conditions.

- $\bigcirc \quad U \in \sigma \mathscr{F}$
- ② Given \mathscr{F} -structures $X \subseteq Y$, given an embedding $e: X \hookrightarrow U$, there exists an embedding $f: Y \hookrightarrow U$ such that $f \upharpoonright X = e$.
- Every F-structure embeds into U.

Image: A matrix and a matrix

$$\sigma\mathscr{F} := \left\{ \bigcup_{n \in \omega} X_n \colon \{X_n\}_{n \in \omega} \subseteq \mathscr{F} \text{ is a chain} \right\}$$

Theorem

Let \mathscr{F} be a countable Fraïssé class. Then there exists a unique, up to isomorphism, countable structure $U = \text{Flim } \mathscr{F}$, satisfying the following conditions.

$U \in \sigma \mathscr{F}.$

- ② Given \mathscr{F} -structures $X \subseteq Y$, given an embedding $e: X \hookrightarrow U$, there exists an embedding $f: Y \hookrightarrow U$ such that $f \upharpoonright X = e$.
- Every F-structure embeds into U.

(B)

$$\sigma\mathscr{F} := \left\{ \bigcup_{n \in \omega} X_n \colon \{X_n\}_{n \in \omega} \subseteq \mathscr{F} \text{ is a chain} \right\}$$

Theorem

Let \mathscr{F} be a countable Fraïssé class. Then there exists a unique, up to isomorphism, countable structure $U = \text{Flim } \mathscr{F}$, satisfying the following conditions.

- $U \in \sigma \mathscr{F}$.
- ② Given \mathscr{F} -structures $X \subseteq Y$, given an embedding e: $X \hookrightarrow U$, there exists an embedding f: Y ↔ U such that $f \upharpoonright X = e$.

Every *F*-structure embeds into U.

3

A B > A B >

Image: A matrix and a matrix

$$\sigma\mathscr{F} := \left\{ \bigcup_{n \in \omega} X_n \colon \{X_n\}_{n \in \omega} \subseteq \mathscr{F} \text{ is a chain} \right\}$$

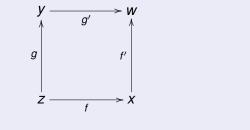
Theorem

Let \mathscr{F} be a countable Fraïssé class. Then there exists a unique, up to isomorphism, countable structure $U = \text{Flim } \mathscr{F}$, satisfying the following conditions.

- $U \in \sigma \mathscr{F}.$
- ② Given ℱ-structures X ⊆ Y, given an embedding e: X → U, there exists an embedding f: Y → U such that f ↾ X = e.
- Severy *F*-structure embeds into U.

(B)

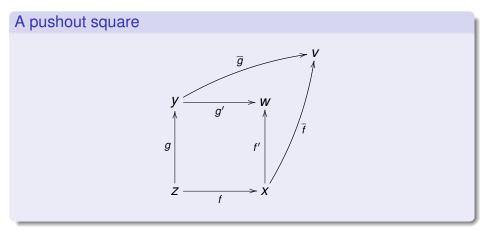
Main ingredient: pushouts



2

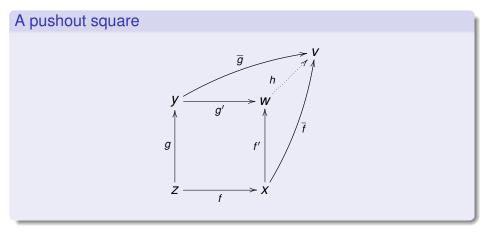
4 3 > 4 3

Main ingredient: pushouts



4 3 > 4 3

Main ingredient: pushouts



Mixed pushouts

Definition

Let $\mathfrak{K} \subseteq \mathfrak{L}$ be two categories. We say that \mathfrak{K} has mixed pushouts in \mathfrak{L} if for every \mathfrak{K} -arrow $i: C \to A$, for every \mathfrak{L} -arrow $f: C \to B$, there exist a \mathfrak{K} -arrow $j: B \to W$ and an \mathfrak{L} -arrow $g: A \to W$ such that the diagram

commutes.

< 6 b

Universal homomorphisms, I

Theorem

Let \mathfrak{M} be a countable Fraïssé class of finitely generated models, with the mixed pushout property. Let W denote the Fraïssé limit of \mathfrak{M} . Then there exists a unique (up to isomorphism) homomorphism L: $W \to W$ satisfying the following conditions.

(a) For every X, Y ∈ σ𝔐, for every homomorphism F: X → Y there exist embeddings I_X: X → W and I_Y: Y → W such that L ∘ I_X = I_Y ∘ F.

(b) Given finitely generated substructures x₀, x₁, y₀, y₁ of W such that L[x_i] ⊆ y_i for i < 2, given isomorphisms h_i: x_i → y_i for i < 2 such that L ∘ h₀ = h₁ ∘ L, there exist automorphisms H_i: W → W extending h_i for i < 2, and such that L ∘ H₀ = H₁ ∘ L.

Universal homomorphisms, I

Theorem

Let \mathfrak{M} be a countable Fraïssé class of finitely generated models, with the mixed pushout property. Let W denote the Fraïssé limit of \mathfrak{M} . Then there exists a unique (up to isomorphism) homomorphism L: $W \to W$ satisfying the following conditions.

(a) For every $X, Y \in \sigma \mathfrak{M}$, for every homomorphism $F : X \to Y$ there exist embeddings $I_X : X \to W$ and $I_Y : Y \to W$ such that $L \circ I_X = I_Y \circ F$.

(b) Given finitely generated substructures x₀, x₁, y₀, y₁ of W such that L[x_i] ⊆ y_i for i < 2, given isomorphisms h_i: x_i → y_i for i < 2 such that L ∘ h₀ = h₁ ∘ L, there exist automorphisms H_i: W → W extending h_i for i < 2, and such that L ∘ H₀ = H₁ ∘ L.

Universal homomorphisms, I

Theorem

Let \mathfrak{M} be a countable Fraïssé class of finitely generated models, with the mixed pushout property. Let W denote the Fraïssé limit of \mathfrak{M} . Then there exists a unique (up to isomorphism) homomorphism L: $W \to W$ satisfying the following conditions.

(a) For every $X, Y \in \sigma \mathfrak{M}$, for every homomorphism $F : X \to Y$ there exist embeddings $I_X : X \to W$ and $I_Y : Y \to W$ such that $L \circ I_X = I_Y \circ F$.

(b) Given finitely generated substructures x₀, x₁, y₀, y₁ of W such that L[x_i] ⊆ y_i for i < 2, given isomorphisms h_i: x_i → y_i for i < 2 such that L ∘ h₀ = h₁ ∘ L, there exist automorphisms H_i: W → W extending h_i for i < 2, and such that L ∘ H₀ = H₁ ∘ L.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

2

<ロ> <同> <同> <同> <同> 、

Universal homomorphisms, II

Theorem (Pech & Pech 2012)

Let \mathfrak{M} be as before and let $X \in \sigma \mathfrak{M}$. Then there exists $U(X) \in \sigma \mathfrak{M}$ such that $X \subseteq U(X)$, and there exists a homomorphism $u \colon U(X) \to X$ satisfying

• For every $Y \in \sigma \mathfrak{M}$ and for every homomorphism $f: Y \to X$ there is an embedding $i: Y \to U(X)$ such that $u \circ i = f$.

② For every finitely generated substructures S, T ⊆ U(X), for every isomorphism h: S → T such that u ∘ h = u, there exists an isomorphism H: U(X) → U(X) satisfying H ↾ S = h and u ∘ H = u.

Universal homomorphisms, II

Theorem (Pech & Pech 2012)

Let \mathfrak{M} be as before and let $X \in \sigma \mathfrak{M}$. Then there exists $U(X) \in \sigma \mathfrak{M}$ such that $X \subseteq U(X)$, and there exists a homomorphism $u \colon U(X) \to X$ satisfying

• For every $Y \in \sigma \mathfrak{M}$ and for every homomorphism $f: Y \to X$ there is an embedding $i: Y \to U(X)$ such that $u \circ i = f$.

Por every finitely generated substructures S, T ⊆ U(X), for every isomorphism h: S → T such that u ∘ h = u, there exists an isomorphism H: U(X) → U(X) satisfying H ↾ S = h and u ∘ H = u.

< 日 > < 同 > < 回 > < 回 > < 回 > <

Universal homomorphisms, II

Theorem (Pech & Pech 2012)

Let \mathfrak{M} be as before and let $X \in \sigma \mathfrak{M}$. Then there exists $U(X) \in \sigma \mathfrak{M}$ such that $X \subseteq U(X)$, and there exists a homomorphism $u \colon U(X) \to X$ satisfying

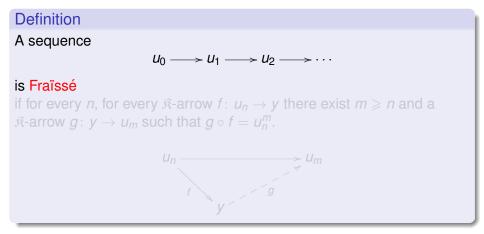
• For every $Y \in \sigma \mathfrak{M}$ and for every homomorphism $f: Y \to X$ there is an embedding $i: Y \to U(X)$ such that $u \circ i = f$.

Por every finitely generated substructures S, T ⊆ U(X), for every isomorphism h: S → T such that u ∘ h = u, there exists an isomorphism H: U(X) → U(X) satisfying H ↾ S = h and u ∘ H = u.

3

< 日 > < 同 > < 回 > < 回 > < 回 > <

The key tool



3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The key tool

Definition

A sequence

$$U_0 \longrightarrow U_1 \longrightarrow U_2 \longrightarrow \cdots$$

is Fraïssé

if for every *n*, for every \Re -arrow $f: u_n \to y$ there exist $m \ge n$ and a \Re -arrow $g: y \to u_m$ such that $g \circ f = u_n^m$.

Relevant categories

Fix a class \mathfrak{M} of finitely generated models. Let \mathfrak{K} be the category whose objects are homomorphisms $f: X \to Y$, where $X, Y \in \mathfrak{M}$. A \mathfrak{K} -arrow from $f: X \to Y$ to $g: Z \to V$ is a pair of embeddings $\langle i, j \rangle$ satisfying $g \circ i = j \circ f$.

Claim

If $\mathfrak M$ is countable and has the mixed pushout property then $\mathfrak K$ has a Fraïssé sequence.

Fix a class \mathfrak{M} of finitely generated models. Let \mathfrak{K} be the category whose objects are homomorphisms $f: X \to Y$, where $X, Y \in \mathfrak{M}$. A \mathfrak{K} -arrow from $f: X \to Y$ to $g: Z \to V$ is a pair of embeddings $\langle i, j \rangle$ satisfying $g \circ i = j \circ f$.

Claim

If $\mathfrak M$ is countable and has the mixed pushout property then $\mathfrak R$ has a Fraïssé sequence.

(B)

Now fix $X \in \sigma \mathfrak{M}$. Let \mathfrak{L} be the category whose objects are homomorphisms $f: A \to X$, where $A \in \mathfrak{M}$. An \mathfrak{L} -arrow from $f: A \to X$ to $g: B \to X$ is an embedding $i: A \to B$ such that $g \circ i = f$.

Claim

If $\mathfrak M$ is countable and has the mixed pushout property then $\mathfrak L$ has a Fraïssé sequence.

References

- J. GARBULIŃSKA, W. KUBIŚ, *A universal operator on the Gurarii space*, preprint
- W. KUBIŚ, *Fraïssé sequences: category-theoretic approach to universal homogeneous structures*, preprint http://arxiv.org/abs/0711.1683
- W. KUBIŚ, *Metric-enriched categories and approximate Fraïssé limits*, preprint http://arxiv.org/abs/1210.6506
- C. PECH, M. PECH, Universal homogeneous constraint structures and the hom-equivalence classes of weakly oligomorphic structures, preprint http://arxiv.org/abs/1203.6086

References

- J. GARBULIŃSKA, W. KUBIŚ, *A universal operator on the Gurarii space*, preprint
- W. KUBIŚ, *Fraïssé sequences: category-theoretic approach to universal homogeneous structures*, preprint http://arxiv.org/abs/0711.1683
- W. KUBIŚ, *Metric-enriched categories and approximate Fraïssé limits*, preprint http://arxiv.org/abs/1210.6506
- C. PECH, M. PECH, Universal homogeneous constraint structures and the hom-equivalence classes of weakly oligomorphic structures, preprint http://arxiv.org/abs/1203.6086

≌⊡∞ [™]····· ≏ THE END

A B >
 A B >